2004 COMP.DSP Conference; Cannon Falls, MN, July 29-30, 2004

Interpolated Lowpass FIR Filters

Speaker: Richard Lyons

Besser Associates

E-mail: r.lyons@ieee.com

Interpolated FIR Filters

- ► Interpolated FIR filters are used to build narrowband lowpass FIR filters,
 - possibly more computationally efficient than traditional Parks-McClellan-designed FIR filters.
- ► Interpolated FIR (IFIR) filters are based upon the behavior of an N-tap nonrecursive linearphase FIR filter,
 - when each of its single-unit delays are replaced with M-unit delays,
 - where M is an integer.

For example:

 $h_p(k)$ impulse response of a 9-tap FIR *prototype* filter.

(b)

(c)

 $h_{\rm sh}(k)$ impulse response of an expanded FIR filter, where M=3. We the expanded filter the *shaping filter*.

► Prototype FIR filter's transfer function as

$$H_{\rm p}(z) = \sum_{k=0}^{N_{\rm p}-1} h_{\rm p}(k) z^{-k}$$

- where N_p is the length of $h_p(k)$, and k is the filter coefficient index.
- ► Transfer function of a general shaping FIR filter $[z \text{ in } H_p(z) \text{ replaced with } z^M]$ is

$$H_{\rm sh}(z) = \sum_{k=0}^{N_{\rm p}-1} h_{\rm p}(k) z^{-kM}.$$

- ▶ If the number of coefficients in the prototype filter is N_p ,
 - expanded impulse response length of shaping filter is

$$K_{\rm sh} = M(N_{\rm p} - 1) + 1.$$

- An M-fold expansion of the impulse response causes an M-fold compression (and repetition) of $|H_p(f)|$ frequency magnitude response.
- ▶ There are M repetitive passbands in $|H_{sh}(f)|$,
 - centered at integer multiples of 1/M (f_s/M Hz),
 - called images.

- ▶ Next, we follow the shaping subfilter with a lowpass image-reject subfilter,
 - whose task is to attenuate the image passbands,
- ▶ The resultant $|H_{ifir}(f)|$ frequency magnitude response is, of course, the product

$$|H_{\rm ifir}(f)|=|H_{\rm sh}(f)|\,|H_{\rm ir}(f)|.$$

Cascaded subfilters is called an

Interpolated FIR (IFIR) filter.

IFIR filter interpolated impulse response.

(Interpolated version of $h_p(k)$.)

- lacktriangle Original desired lowpass filter's passband width is $f_{
 m pass}$,
 - its stopband begins at f_{stop} , and
 - Its transition region width is $f_{\text{trans}} = f_{\text{stop}} f_{\text{pass}}$,
- ► Then the prototype subfilter's normalized frequency parameters are defined as

$$f_{\text{p-pass}} = M f_{\text{pass}}, \quad f_{\text{p-stop}} = M f_{\text{stop}}, \quad \text{and} \quad f_{\text{p-trans}} = M f_{\text{trans}} = M (f_{\text{stop}} - f_{\text{pass}}).$$

► The image-reject subfilter's frequency parameters are

$$f_{\text{ir-pass}} = f_{\text{pass}}$$
, and $f_{\text{ir-stop}} = \frac{1}{M} - f_{\text{stop}}$.

- ► Stopband attenuations of the prototype filter and image-reject subfilter are identical,
 - set equal to the desired IFIR filter stopband attenuation.
- ► Let's look at a design example:
- ► Consider the design of a *desired* linear-phase FIR filter:
 - normalized passband width is $f_{\text{pass}} = 0.1$,
 - passband ripple is 0.1 dB, (peak-peak)
 - transition region width is $f_{\text{trans}} = 0.02$, and
 - stopband attenuation is 60 dB.
- \blacktriangleright Expansion factor of M = 3.

► Here's what we have:

- ► Satisfying the original desired filter specifications would
 - require a traditional single-stage FIR filter with $N_{\rm tfir}$ = 137 taps,
 - 'tfir' subscript means traditional FIR.
- ► Shape of $|H_{ifir}(f)|$ determined by $|H_{sh}(f)|$ "shaping subfilter".

- ► IFIR's shaping and the image-reject subfilters require $N_p = 45$ and $N_{ir} = 25$ taps respectively,
 - for a total of $N_{\text{ifir}} = 70$ taps.
- **▶** We define the percent reduction in computational workload as

% computation reduction =
$$100 \frac{N_{\text{tfir}} - N_{\text{p}} - N_{\text{ir}}}{N_{\text{tfir}}}$$
. (1)

► IFIR filter computational workload reduction:

% computational reduction =
$$100 \frac{137 - 70}{137} = 49\%$$
.

Choosing the Optimum Expansion Factor M

- \triangleright Expansion factor M has a profound effect on the computational efficiency of IFIR filters.
- ightharpoonup To show this, consider other values of expansion factor M.

Expansion factor M	Numbe	er of taps	Computation reduction	
	$h_{\rm sh}(k)$	$h_{\rm ir}(k)$	IFIR	
			total	
2	69	8	77	43%
3	45	25	70	49%
4	35	95	130	8%

- ► As so often happens in signal processing designs, there is a trade off to be made.
 - Smaller M, reduced frequency compression in $H_{sh}(f)$, increases necessary N_p taps,
 - Larger M, reduces transition region width of $H_{ir}(f)$, increases necessary N_{ir} taps.

- ► As indicated in the following figure,
 - max M is the largest integer satisfying 1/M- $f_{\text{stop}} \ge f_{\text{stop}}$, (or $1/M \ge 2f_{\text{stop}}$),
 - ensuring no passband image overlap.

ightharpoonup This yields an upper bound on M of

$$M_{\text{max}} = \left\lfloor \frac{1}{2f_{\text{stop}}} \right\rfloor$$

- where $\lfloor x \rfloor$ indicates truncation of x to an integer.
- ▶ Thus the acceptable expansion factors are integers in the range $2 \le M \le M_{\text{max}}$.
- ► For our above IFIR filter design example:

$$M_{\text{max}} = \left[\frac{1}{2(0.1 + 0.02)} \right] = 4.$$

Estimating the Number of FIR Filter Taps

- **▶** To estimate the computation reduction of IFIR filters,
 - we need an algorithm to compute $N_{
 m tfir}$,
 - the number of taps, in a traditional nonrecursive FIR filter.
- ightharpoonup A particularly simple expression for N_{tfir} is

$$N_{\rm tfir} \approx \frac{Atten}{22(f_{\rm stop} - f_{\rm pass})}$$
 (2)

- Where Atten = stopband attenuation in dB
- ► Likewise, the number of taps in the prototype and image-reject subfilters are

$$N_{\rm p} \approx \frac{Atten}{22(M)(f_{\rm stop} - f_{\rm pass})}$$
, and (2')

$$N_{\rm ir} \approx \frac{Atten}{22(1/M - f_{\rm ston} - f_{\rm pass})}$$
 (2")

Modeling IFIR Filter Performance

- **▶** We want to model "% computation reduction" in terms of desired filter parameters.
- ► If we substitute the expressions from Eq. (2) into Eq. (1),
 - we can write the important IFIR filter design equation:

% computation reduction =
$$100 \left[\frac{M-1}{M} - \frac{Mf_{\text{trans}}}{1 - Mf_{\text{trans}} - 2Mf_{\text{pass}}} \right]$$
. (3)

- where $f_{\text{trans}} = f_{\text{stop}} - f_{\text{pass}}$.

- ► Equation (3) is plotted below, for $f_{\text{pass}} = 0.1$
 - showing % computation reduction vs. $f_{\rm trans}$.

- \blacktriangleright When the transition region width is large, only a small M will avoid passband image overlap.
- ► At smaller transition region widths, larger expansion factors are possible.

► Here's IFIR filter performance when the $f_{\text{pass}} = 0.05$.

► As f_{trans} approaches zero, % computation reduction approaches 100(M-1)/M.

► Here we plot max % computation reduction as a function of f_{trans} for $f_{\text{pass}} = 0.1$

- on a logarithmic frequency axis.

- ightharpoonup Next, we include other f_{pass} curves to show max % computation reduction vs. f_{trans} ,
 - and optimum M used to compute the max % computation reduction curves.

► These are our IFIR filter design curves. ②

IFIR Filter Implementation Issues

- ► Please resist the temptation to combine the two subfilters into a single filter
 - whose coefficients are the convolution of the subfilters' impulse responses.
 - With such a maneuver would we'd lose all computation reduction.
- ► When using programmable DSP chips, larger values of *M* require a larger block of hardware data memory, in the form of a circular buffer, be available for the shaping subfilter.
- The size of this data memory must be at least

$$K_{\rm sh} = M(N_{\rm p} - 1) + 1.$$

- ► When implementing an IFIR filter with a programmable DSP chip,
 - you must loop through the circular signal data buffer using an increment equal to M.
- ► If possible, use *folded* nonrecursive FIR structures,
 - to reduce the number of multiplications by a factor of two.

IFIR Filter Design Example

- ► The design of practical lowpass IFIR filters is straightforward, and comprises four steps:
 - Define the desired lowpass filter performance requirements,
 - Determine a candidate value for the expansion factor M,
 - Design and evaluate the shaping and image-reject subfilters, and
 - Investigate IFIR filter performance for alternate expansion factors near the initial M value.
- ► As a design example, we'll design a lowpass IFIR filter with:
 - $-f_{\text{pass}}=0.02,$
 - passband ripple of 0.5 dB (p-p),
 - $f_{\text{trans}} = 0.01$ (thus $f_{\text{stop}} = 0.03$), and
 - stopband attenuation = 50 dB.

- First, we find the $f_{\text{trans}} = 0.01$ point on the abscissa of our design curve and
 - follow it up to the point where it intersects the $f_{\mathrm{pass}} = 0.02$ curve.
 - This intersection indicates we should start our design with M = 7.

▶ With M = 7, we use our favorite traditional FIR filter design software to design a linear-phase prototype FIR filter with the following parameters:

$$f_{\text{p-pass}} = Mf_{\text{pass}} = 7(0.02) = 0.14,$$
passband ripple = $(0.5)/2$ dB = 0.25 dB, (rule of thumb)
 $f_{\text{p-stop}} = Mf_{\text{stop}} = 7(0.03) = 0.21,$ and
stopband attenuation = 50 dB.

- ► Such a prototype FIR filter will have $N_p = 33$ taps and, with M = 7,
 - shaping subfilter has an impulse response length of $K_{\rm sh} = 225$ samples.
- ► Next, we design an image-reject subfilter having the following parameters:

$$f_{\text{ir-pass}} = f_{\text{pass}} = 0.02,$$

passband ripple = $(0.5)/2$ dB = 0.25 dB,
 $f_{\text{ir-stop}} = \frac{1}{M} - f_{\text{stop}} = 1/7 - 0.03 = 0.113,$ and
stopband attenuation = 50 dB.

► This image-reject subfilter will have $N_{ir} = 27$ taps.

- ► Cascaded image-reject and shaping subfilters require 60 multiplications per output sample.
 - IFIR filter frequency magnitude response is shown below.

► A traditional FIR filter requires roughly $N_{\text{tfir}} = 240$ taps.

- ► Computational workload reduction is $100 \times (240 60)/240 = 75\%!$ ©
 - Final IFIR filter design step is to sit back and enjoy a job well done.

► Further modeling, using alternate expansion factors, yields the following table.

Expansion factor M	Number of taps			K _{sh} data storage	Computation reduction:
	$h_{\rm sh}(k)$	$h_{\rm ir}(k)$	IFIR total		
3	76	8	84	226	65%
4	58	12	70	229	71%
5	46	17	63	226	74%
6	39	22	61	229	75%
7	33	27	60	225	75%
8	29	33	62	225	74%
9	26	41	67	226	72%
10	24	49	73	231	70%
11	21	60	81	221	66%

IFIR Filters With Sample Rate Conversion (SRC)

- ► IFIR filters useful for signal sample rate change applications,
 - decimation or interpolation.
- \triangleright Consider an IFIR filter followed by downsampling by integer M.
- Operation ' $\downarrow M$ ' means discard all but every Mth sample.
- ► Because $H_{\rm sh}(z^M)$ and $H_{\rm ir}(z)$ are linear, we can swap their order.

Decimation

- ► Here comes the good part.
- ► We can swap the order of the $H_{\rm sh}(z^M)$ filter with the downsampler.
- Now, where every *M*-unit delay in $H_{\rm sh}(z^M)$ is replaced by a unit delay.

Decimation

- ightharpoonup This takes use back to using our original low-order prototype filter $H_p(z)$,
 - with its reduced signal data storage requirements. 😊
- ▶ Also, the $H_{ir}(z)$ and M downsampler combination can use polyphase filtering to reduce computational workload [1].

- ► Similarly, IFIR filters can be used for interpolation (upsampling).
 - The upsampling (interpolation) operation ' $\uparrow M$ ' means insert M-1 zero-valued samples between each x(n) sample.

Interpolation

- ► We swap the order of filter $H_{sh}(z^M)$ with the upsampler,
- Now every M-unit delay in $H_{sh}(z^M)$ is replaced by a unit delay.
- ightharpoonup This takes use back to using our original low-order prototype filter $H_p(z)$,
 - with its reduced signal data storage requirements. 😊
- The M upsampler and $H_{ir}(z)$ combination can use polyphase filtering to reduce computational workload.

IFIR Filter Summary

- **▶** We've introduced the structure and performance of IFIR filters.
- ► IFIR filters they can achieve significant computational workload reduction relative to traditional nonrecursive FIR filters,
 - reductions as large as 90%.
- ► IFIR filter implementation is a cascade of filters simple tapped-delay line FIR filters,
 - designed using readily-available nonrecursive FIR filter design software.

- ► More IFIR filter details,
 - math derivations
 - design guidelines, and
 - additional literature references are provided in:

Reference [1]:

Understanding Digital Signal Processing, 2nd Ed., by R. Lyons, Prentice Hall, Upper Saddle River, New Jersey, 2004

